

ENS Clean Air

EN5*

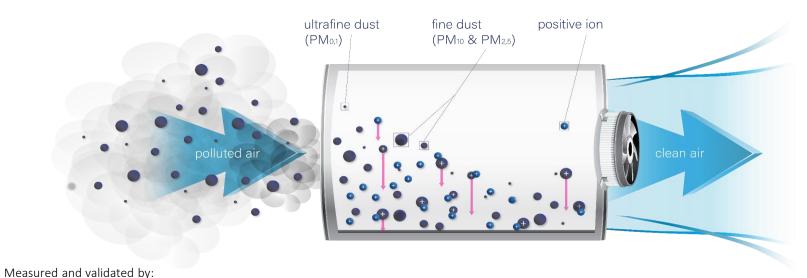
- Dutch family-owned company, founded in 2009
- Established to reduce exposure to airborne pathogens such as viruses and bacteria
- Knowledge driven, in-house R&D and engineering
- Collaboration with international research institutes and industry partners

ENS Clean Air

Removal of particulate matter and odor from ambient air and emission sources

- Urban areas
- Infrastructural works
- Buildings
- Heavy industry
- Agriculture
- Healthcare
- Hospitality

Particulate Matter


Particulate matter (PM) is a mixture of **solid and liquid particles** suspended in air (=aerosols). Fine PM can penetrate deep into the **lungs and bloodstream**. Of all air pollutants, PM by far causes the most **adverse health effects**.

Positive ionization technology

Air is **actively** drawn in, where **Particulate Matter** is positively charged in a strong electric field. As a result, it **agglomerates to coarse dust** and is internally collected.

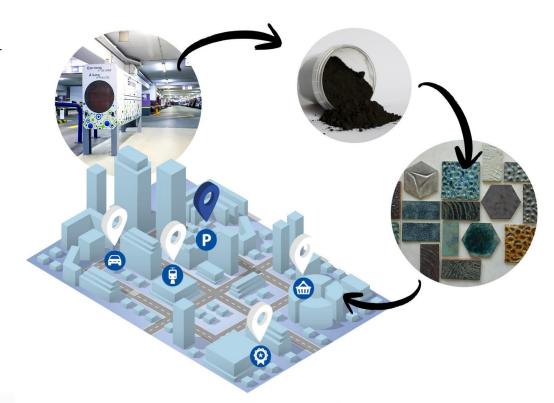
Positive ionization technology

Minimal energy consumption

Immune to weather conditions

Non-hazardous

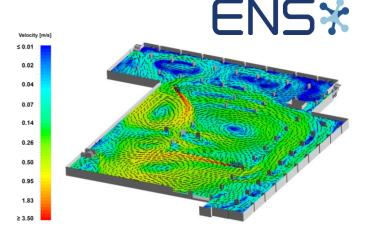
No secondary emissions



All air volumes

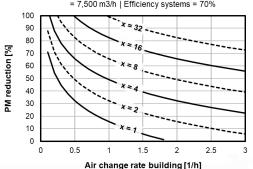
Circulairity

Circular use of Particulate Matter residual waste


ENS' Engineering methods

Mitigation Modelling

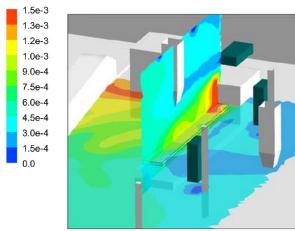
- Computational Fluid Dynamics (CFD)
 - Air flow and meteorological phenomena
 - Dispersion of polluted/cleaned air.
- Numerical modelling


Measurements (high resolution)

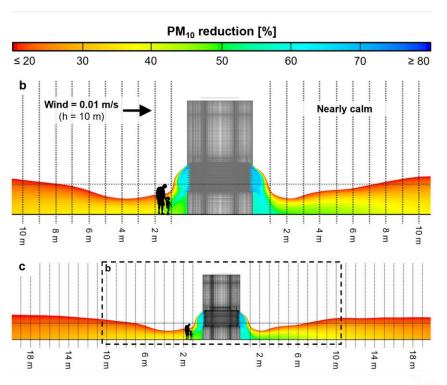
- Treatment efficiency
- Local effect measurements

Average PM reduction versus air change rate at application of x ESP systems

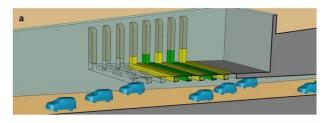
Building volume = 20,000 m3 | Capacity systems = 7,500 m3/h | Efficiency systems = 70%

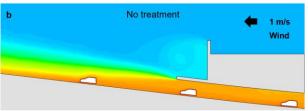

Industry

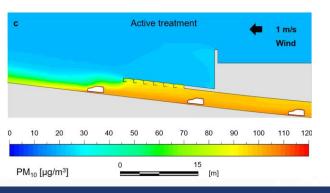
- Improvement of working environments
- Emission control



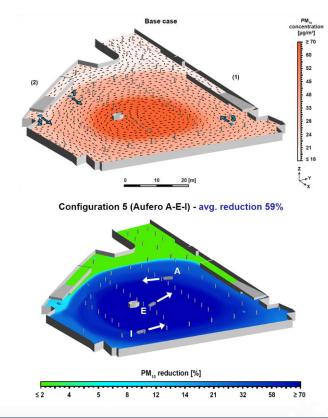
Public spaces


Infrastructure


- Tunnels
- Highway
- Street canyons



Public transport



Car Parks

Vervoort, van Hooff, Blocken (2018). Reduction of particulate matter concentrations by local removal in a semi-enclosed parking garage. Proceedings of Roomvent&Ventilation, pp. 797-802

EN5*

Lungs of the City is an academically proven strategy that uses existing infrastructural facilities to improve urban air quality by air quality improvement at exposure hotspots such as:

- Squares and parks
- Public buildings
- Parking garages
- Metro stations
- Street furniture
- Bus terminals
- Tunnels

Lungs of the City is an academically proven strategy that uses existing infrastructural facilities to improve urban air quality by air quality improvement at exposure hotspots such as:

- Squares and parks
- Public buildings
- Parking garages
- Metro stations
- Street furniture
- Bus terminals
- Tunnels

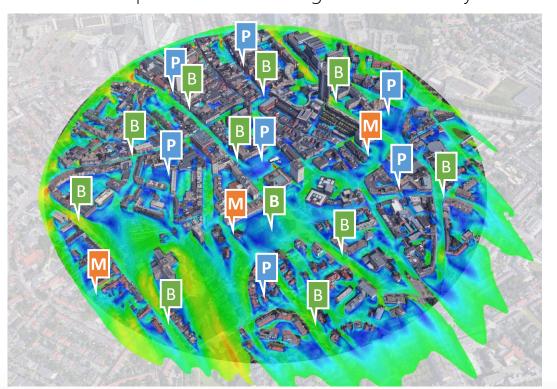
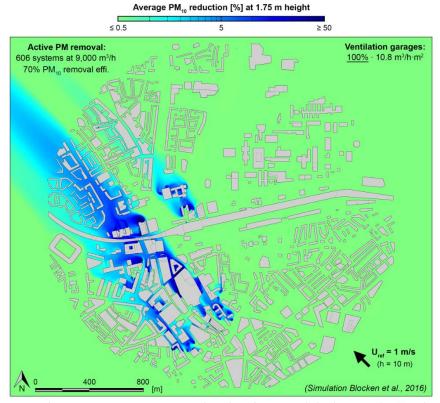


Illustration of potential urban integration at mobility facilities

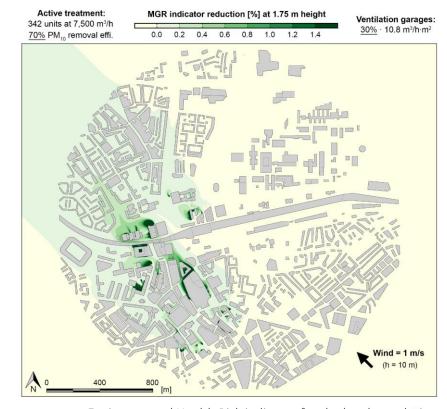


ENS*

Eindhoven (NL) effect study

Cumulative effect of multiple strategically chosen air treatment locations

- Significant reduction of PM concentration in vicinity of hot spot locations.
- Using the underground parking >50% PM reduction can be achieved inside, and 10-50% for the surrounding area above ground. The cleaned air is carried by the wind, so that it also reaches distant areas and shows an air quality improvement up to 1 km away.


Reduction of PM10 concentration at a height of 1.75 m (Blocken et al., 2016).

Eindhoven (NL) effect study

Less exposure at hotspots leads to reduced health risk of local population (-25% of disease burden attributed to AQ)

- For the effect area this results in a yearly socioeconomic benefit of up to 1 M€ per year
- A variety of business cases are explored and confirm that the solution is cost-effective

Improvement on Environmental Health Risk indicator for the local population

Projects (2014-2021)

These case studies underline the effectiveness of the air purification technology, and furthermore show the efficiency of CFD simulations and onsite measurements (or combination) in assessing the performance of PM mitigation strategies

Area Applications

2015-2020	Smog Free Tower, Rotterdam [NL]; Bejijng,
	Tjianjin, Dalian [CN]; Krakow [PL]; Anyang [SK]
2015-present	Mobile equipment, Street sweeper Hygion (Ravo)
2016-present	Mobile equipment, Cold mill (Bomag)
2016-2017	A13 Overschie [NL], noise barrier
2016-2020	A15 Noordtunnel [NL] traffic tunnel
2018	Street canyon Amsterdam [NL],
2020	Street canyon Antwerp [BE]
2020-2021	Schoolyard, Poissy [FR], Courbevoie [FR]
2021	Town Square and Shopping Street, Belgrade [SB]
2021-2024	Village d'Athletes – Paris Olympics 2024 [FR]

Building applications

2014-2021	20+ Parking garages in the Netherlands, Belgium	
	France, and Mexico	
2018	Courtyard of a School Building, New Delhi [IN]	
2019-2020	Avenue Foch Train Station, Paris [FR]	
2019-2020	Metro station Alexandre Dumas [FR]	
2019-2020	Bus terminal, Seoul [SK]	

Projects (2014-2021)

Building Applications: Courtyard of a School building, New Delhi, 2018

Vervoort, Blocken, Van Hooff (2019) Reduction of particulate matter concentrations by local removal in a building courtyard: Case study for the Delhi American Embassy School, Science Of The Total Environment, 686 pp. 657-680

Projects (2014-2021)

Building Applications: Courtyard of a School building, New Delhi, 2018

During the measurement period, the following PM concentrations were recorded (10-minute average values):

Maximum background

PM₁₀ 643 μg/m³
 PM_{2.5} 550 μg/m³
 PM₁ 513 μg/m³

Overall daily average

PM₁₀ 154 μg/m³ ±68
 PM_{2.5} 118 μg/m³ ±55
 PM₁ 107 μg/m³ ±50

Building averaged concentration reduction PM₁₀ PM₂₅ PM₁ PM₁₀ PM₂₅ PM₁ PM₁₀ PM₂₅ PM₁

	Reference (μg/ m3)	Courtyard (µg/ m3)	Absolute reduction (μg/ m3)
PM10	222.2 ±102.2	119.3 ±49.2	102.9
PM2.5	163.8 ±97.3	95.3 ±48.4	68.5
PM1	147.8 ±92.6	88.9 ±47.5	58.9

PM fraction [-]

Vervoort, Blocken, Van Hooff (2019) Reduction of particulate matter concentrations by local removal in a building courtyard: Case study for the Delhi American Embassy School, Science Of The Total Environment, 686 pp. 657-680

PM fraction [-]

ENS* Clean air solutions

- ENS Clean AirGrotestraat 415431 DH Cuijk (NL)
- **C** +31 (0) 486 423 378
- info@ens-cleanair.com
- www.ens-cleanair.com