Rotary Kite Turbine Development

Roderick Read

Windswept and Interesting Ltd

AIRBORNE ENERGY 2021 CONFERENCE

Rotary Kite Turbine Development

Roderick Read

Windswept and Interesting Ltd

AIRBORNE ENERGY 2021 CONFERENCE

Intrinsic Factors

Windsweptenergy

(0)

In accordance with our Shell General Business Principles and Group Code of Conduct, we seek to work with contractors and suppliers who contribute to sustainable development and are economically, environmentally and socially responsible.

We will develop and strengthen relationships with contractors and suppliers who are committed to the principles set out below or to similar standards through their own activities and the management of their own suppliers and sub-contractors.

Contractors and suppliers should provide workers with a dedicated whistle-blowing mechanism where grievances related to below topics can be logged confidentially.

1. Business Integrity

Contractors and suppliers comply with all applicable laws and regulations. Contractors and suppliers should not tolerate, permit or engage in bribery, corruption or unethical practices. Contractors and suppliers support fair competition.

Conflicts of interest are avoided.

2. Health, Safety, Security, Environment and Social Performance

Contractors and suppliers have a systematic approach to HSSE & SP management, designed to ensure compliance with all applicable laws and regulations and to achieve continuous performance improvement.

Contractors and suppliers:

are committed to protect the environment in compliance with all applicable environmental laws and regulations.

© Shell Global Solutions International BV 2019.

Commissional Solutions international BV 2019. Permission to reproduce any part of this publication should be sought from Shell Global Solutions International BV. Permission will usually be given. Provided that the source is acknowledged. If here are discrepancies between the translated version and English version, the English version will prevail.

use energy and natural resources efficiently.

 continually look for ways to minimise waste, emissions and discharge of their operations, products and services.

 respect their neighbors and contribute to the societies in which they operate.

 manage the social impacts of their activities carefully and enhance the benefits to local communities

 recognize that regular dialogue and engagement with stakeholders is essential. In interactions with employees, business partners and local communities, seek to listen and respond to them honestly and responsibly.

3. Labour and Human Rights

Contractors and suppliers conduct their activities in a manner that respects human rights as set out in the UN Universal Declaration of Human Rights and the core conventions of the International Labour Organization (ILO) including ensuring: no use of child labour;

- no use of forced, prison or compulsory labour; no payment of recruitment fees by workers;
- compliance with all applicable laws and

regulations on freedom of association and collective bargaining.

 a safe, secure and healthy workplace and not tolerating discrimination, harassment or retaliation; compliance with all applicable laws and regulations on working hours; and

providing wages and benefits that meet or exceed the national legal standards.

AIRBORNE WINDENERGY 2021 CONFERENCE

Validation of Performance Requirements via **Test Standards**

0

	COMPONENTS	DESCRIPTION		
1	> 🕅 Field	The Outside Areas where all the testing and wind is		
2	> 🕞 Office_Business	Organisation Level Components and Systems		
3	V V Kite_Turbine	Spins round in the air converting wind flow into mechanical rotation		
3.1	V Transmission_TRPT	A TRPT Tensile Rotary Power Transmission is a horn shaped cylindrical net, made fr	REQUIREMENTS	TEXT
3.4.1	Polygon_Rods_Bars	The basic polygon form of a TRPT layer is made up of 5/6/7 polygon rods/bars	Lifter Maga	the maximum made of th
3.4.2	Torque_Tethers	A polar array of tethers to hold the kite turbine and allow it to spinEach tethe		the maximum mass of th
3.4.3	Compression_wrap	When Knuck recompres if to hold polygon rods (Bars) to knuckle nodes	✓ Lift_Line_tensile_Strength	40000.00.N>=(5*0.55.kg)
3.4.4	C Knuckles	A tigh ting no joint to hold is of Rod/Bar etc. ts of the TRPT polygons	S windspeed	must cope with launchin.
3.4.5	Ring_below_turbine	in standard polygon elements	Blade_cover_spec	Must keep the blade seal.
3.4.6	Center_point_disk_and_lines	Lines connecting the nodes of the polygon to the centre of the polygon help to hold t	BBot_Data	A reliable comms link fro.
3.2	✓ ↓ Oversight_controller	A capable field computer stationRuns software to determine what operation	SMD02	The organization uses 'in.
3.2.1	EMERGENCY_STOP_Physical_button	Large red button to cut power from systems in event of emergency	SMD01	A safety management sy.
3.2.2	V D HMI_and_Control_Software	Human Machine Interface will have an interactive screen of controls (See attached fi	weekly_Maintenance	Must look at and inspect
3.2.2.1	Emergency_STOP_Button_Screen	>Large red button on screen to cut power from systems in event of emergency	L_L_Req1	av factor of safety over
3.2.2.2	PTO_Turbine_lag_GUI	<a and="" between="" difference="" display="" i<="" imu="" in="" p="" pto="" rotary="" rotor="" shows="" the="" which="" yaw="">	Max_Wing_loading	W Loa a bas to h
3.2.2.3	Relative_tension_GUI	See file for example. We display the current data within operating bars safe range for	Vinching Speed	V h ma hum line spe
3.2.2.4	refresh_speed	The controller and HMI must have fast refresh speeds. Control data from the IMU or		The backline bet should
3.2.2.5	Health_Confidence_GUI	Simple indication of how overall confident we are in a safe working setup having con-		The backline bot should
3.2.2.6	Turbine_Compression_interface	Compute the Length of the RTK GPS separation from PTO to Turbine Head.	✓ Line_Length	A count of the amount of.
3.2.2.7	Veather_Forecast_Screen	Location specific weather data to trigger a warning if parsed data is outwith operatic	Line_Length-002	An accurate identificatio
(0)	Weather_Data	Location specific weather data to trigger a warning if parsed data is outwith operatic	S Winching_Force	Should be less than ultim
\$2272	Wind_Conditions	Wind direction and speed data from on the field	Locationing	Must be able to have lead.

Windswept.energy

Planning

Validation Metrics

Airborne Wind Europe

<u>1.1</u>	Efficiency
1.2	Reliability
1.3	Availability
1.4	Complexity
1.5	Automatability
1.6	<u>Scalability</u>
1.7	Airborne Mass
1.8	Durability
1.9	Ductility
1.10	Safety
1.11	Potential
1.12	Cost
1.13	Investability

10kW 3 stack x 5 blade rotors

Rotary Kite Turbine Development

Roderick Read

Windswept and Interesting Ltd

AIRBORNE WINDENERGY 2021 CONFERENCE

Windswept.energy